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Abstract-A theoretical study of convective heat transfer in laminar duct flow subjected to an axial 
variation of the external heat transfer coefficient is presented. Since standard analytical techniques are not 
applicable, a variable eigenvalue approach is developed which is capable of handling variable boundary 
condition parameters. Methodology is presented for the case of a stepwise periodic variation of the heat 
transfer coefficient, which serves as a model for a duct fitted with an array of external fins. A parameter 
study showing the effects of a stepwise periodic heat transfer coefficient is presented which gives insight 

into heat transfer enhancement due to finning. 

INTRODUCTION 

HEAT transfer to forced flow in conduits has been the 
subject of numerous investigations, leading all the 
way back to the original Graetz problem [l]. Various 
geometries and thermal boundary conditions, such as 
specified temperature, specified heat flux, or con- 
vection with an external environment via a constant 
heat transfer coefficient, have been extensively inves- 
tigated. An excellent review of the works performed 

up to 1978 is presented by Shah and London [2]. 
Despite this wealth of literature, there appears to be 
no analytical solution available for a fluid exchanging 
heat with an external environment whose heat transfer 
coefficient varies along the axial direction. The reason 
that such a problem, with many important appli- 
cations, remains unresolved is that the conventional 
techniques, such as Green’s functions or finite integral 
transform, all fail when applied to problems involving 
a variable boundary condition parameter. Thus, the 
objective of the present investigation is to develop 
the solution methodology capable of handling forced 
convection with a varying external heat transfer 
coefficient. The solution will be utilized in ~rfo~ing 
a systematic parameter study for the case of fully 
developed, laminar flow in a tube. 

There are many applications for a thermal boun- 
dary condition which varies along the flow direction. 
One example is heat transfer enhancement due to 
external fins. Since a fin increases the effective 
coefficient of heat exchange between the fin base and 
the ambient, a duct fitted with an array of external fins 
can be modeled as an unfinned duct with a periodically 
low and high value of the heat transfer coefficient, 
corresponding to unfinned and finned regions, 
respectively. This model was used by Sparrow and 
Charmchi [3] to examine heat transfer from an exter- 
nally finned, circular tube using a finite-difference 
scheme; however, the periodic stepwise nature of the 

thermal boundary condition made the computational 
task quite demanding, and a complete parameter 
study was not feasible. 

Potential applications for enhancement of heat 
transfer by the use of extended surfaces are plentiful. 
Finned ducts are encountered, for example, in resi- 
dential or industrial space heating. Also condensers, 
evaporators and other heat exchange equipment are 
often augmented by the use of fins. Laminar flow 
applications for enhanced heat transfer include heat- 
ing or cooling of viscous Iiquids in the chemica1 and 
food industries, heating or cooling of oils, heating of 
the circulating fluid in sofar collectors, heat transfer 
in compact heat exchangers, and the cooling or warm- 
ing of blood during surgical operations. While existing 
systems can often be improved by using an augmented 
method, the design of heat exchangers for use in space 
vehicles, aircraft or nuclear reactors require manda- 
tory heat transfer enhancement in order for the system 
to function properly and meet the size and weight 
limitations imposed. 

The present investigation is intended to give insight 
into the heat transfer characteristics associated with 
these applications. In a more general sense, the inves- 
tigation is intended to shed light on solution metho- 
dology for problems involving variable boundary con- 
dition parameters. 

MATHEMATICAL MODEL 

The present investigation focuses on the thermal 
entry region in a conduit with steady, fully developed 
flow entering at temperature T,,, as shown schemati- 
cally in Fig. 1. The duct has convective boundaries 
exchanging heat with an en~ro~ent at temperature 
i”, by virtue of an axially varying heat trans- 
fer coefficient, h(z). The governing energy equation 
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NOMENCLATURE 

coefficients defined by equation (14b) u average velocity 
coefficients defined by equation (lob) 0) dimensionless velocity 
matrix defined by equation (16b) Z axial variable. 
energy source 
heat transfer coefficient Greek symbols 
Biot number thermal diffusivity 
thermal conductivity ;+ transforms after a jump point 
P&let number r: transforms before a jump point 
total heat transfer ? dimensionless radial variable 
radial variable 6(~, 5) dimensionless temperature 
dimensionless energy source 0,(t) bulk temperature 
transformed energy source 8,(t) transformed temperature 
temperature &,,(l) variable eigenvalue 
environment temperature 

Ls 5) 

dimensionless axial variable 
inlet temperature variable eigenfunction 
velocity profile p viscosity. 

1 

and boundary conditions, in dimensionless form, are 
taken as (2b) 

eh 5) = 
Ur, 4 - T, 

T _ T (24 
0 co 

O<q< 1, <>O (la) 

ae 
-=o, q=o 
aq 

H(5) = k 

(24 

; + H(t)0 = 0, q = 1 

e=1, c=o. 

(lc) Energy equation (la) includes a choice of both 
geometry, through the exponent i, and velocity profile, 

(Id) through the function u(r), as follows 

The various dimensionless quantities are defined as 

g = r/r,, 5 = g (24 

( r.& slug flow 

0, parallel plates 
i= 

1, circular tube 

u(r)= ji+-(# fully developed flow, parallel plates 
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FIG. 1. Geometry and coordinates. 

Other velocity profiles may also be selected for appli- 
cations such as the flow of a non-Newtonian fluid. 
The dimensionless source term, S(q, <), includes both 
the effects of viscous energy dissipation and thermal 
energy generation, as seen from definition (2e). Also, 
axial diffusion has been omitted and the fluid pro- 
perties have been taken as constant. 

Many special cases of engineering interest can be 
obtained from the system of equations (1) by merely 
specifying the functional form of the heat transfer 
coefficient, H(t). However, this flexibility in modeling 
is accompanied by mathematical difficulties when an 
analytical solution is attempted. Although the prob- 



lem given by the system of equations (1) is relatively 
easy to describe and is solvable when H(Q is constant 
[4], solutions for a variable Biot number become sur- 
prisingly difficult since the nonseparable nature of the 
problem causes conventional analytical procedures to 
fail. 

In the following section, we develop a generalized 
finite integral transform technique which is capable of 
handling such problems involving variable boundary 
condition parameters. The technique allows for accu- 
rate computations and for a complete study of the 
system parameters. 

GENERAL ANALYSIS 

In order to solve the problem of interest, as 
described by the system of equations (l), we adopt a 
variable eigenfunction technique which was originally 
applied to transient heat conduction by dzisik and 
Murray [S]. The technique is based on the following 
variable eigenvalue problem 

%+fz(e)+o, ?/= 1. (5c) 

Here the axial variable 5 is treated as a parameter. 
At any given axial location the Biot number, H(l), 
has some definite value and we have a corresponding 
set of eigenfunctions, $,,,(q, t), and eigenvalues, &,(~). 
These eigenfunctions obey the following normalized 
orthogonality relation 

(6) 
At any given axial location, the eigenfunctions form 

a complete set and the temperature field, 6(r1,{) can 
subsequently be constructed from an infinite series of 
these functions. Using orthogonality relation (6), we 
can develop in the usual manner the following trans- 
form pair 

Transform : 

Inversion : 

0) 

We now fmd the transforms by operating on energy 
equation (la) with 
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After utilizing boundary conditions (lb,c) and (5b,c), 
we arrive at the following expression 

where 

(8) 

Since our eigenfunctions, $m(~, 0, depend on 5, 
the partial derivative cannot be brought outside the 
integral on the LHS of expression (8). Instead, we 
resort to the eventual form of our solution given by the 
inversion formula, equation (7b). After substituting 
equation (7b) for 6(~,<) in equation (8) and manipu- 
lating, we obtain the following result 

m=1,2,3 ,..., t>O (lOa) 

where the variable coefficients have been defined as 

A&) = (lob) 

The initial conditions are obtained by taking the trans- 
form of equation (Id) to get 

8 m = H(0)$m(l,O) = *,, m = * 2 3 
ma 

> 5 , .., 5 =o. 

(104 
The system of equations (10) constitutes an infinite 

set of coupled, first-order ordinary differential equa- 
tions with variable coefficients for the transforms, 
g,,,(t). The key to getting numerically accurate results 
lies in the successful solution of this set for the 
desired variation of the dimensionless heat transfer 
coefficient, H(t). The following section describes the 
solution procedure for the computationally demand- 
ing case where H(l) varies in a stepwise periodic 
manner. 

TRANSFORMS FOR STEPWISE 

PERIODIC CASE 

The system of equations (10) governing the trans- 
forms are quite sensitive to the axial variation of the 
coefficients, A,(t), and eigenvalues, n,(t), which in 
turn depend on the variation of the Biot number, 
H(t). If H(t) varies in a continuous manner in the 
flow direction, the corresponding functional forms 
of A,(l) and A,,,(<) will also be continuous, result- 
ing in continuity of the transforms. However, a com- 
putationally more difficult case involves a stepwise 
periodic Biot number, as depicted in Fig. 2. This case 
has particular interest since it could serve as a model 
for a duct fitted with an array of external fins, with 
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unfinned and finned regions corresponding to low and 
high Biot numbers, respectively [3]. 

The function shown in Fig. 2 may be expressed as 

wherej=0,1,2 ,.... 

For convenience we have designated the jump points 

by 

t?j=j(tl+tJ 

@lb) 

5:,=At1+52)+51. 

Eigenvalue problem (5) also follows this stepwise 
behavior and we designate the solutions as 

The nature of the transforms resulting from the system 
of equations (10) will also involve discontinuities at 
each jump point. Recognizing this discontinuous 
nature, we adopt the following notation for the trans- 
forms on either side of a jump point 

T-L (5;) = !‘z U5k: -s) (13a) 

f-,+ (lb) = h_y %(r$ + a) (13b) 

where k = 1 or 2,j = 0, 1,2,. . . . 

Turning to the coefficient functions, we evaluate 
definition (lob) by observing the stepwise nature of 
the eigenfunction as expressed in equation (12b). The 
variation of 8$,/a< is seen to be a delta function at 
each jump point and zero everywhere else while the 
eigenfunction assumes an average value at each point 
of discontinuity. Thus equation (lob) can be evalu- 
ated as 

where 

amp 
tizm(l)ti,,(l) 1 a:,-n:, 

Equation (14a) shows that the coefficients, A,(& 
give no contribution to the system of equations (10a) 
except at each jump point, where they contribute an 
impulse, or a delta function. 

With this behavior in mind, we may formally inte- 
grate equation (10a) from the beginning of a constant 
Biot number region, 5 = &$ up to an arbitrary 
location before the next jump point. The result is 

result of this integration in matrix form as 

AJ- + (5;) = r - (r,:) 

where 

Ak = 

2 

I ! 

(- l)ka12 (-l)ka,, 

(-l)kaz, 2 (-l)ka2, 1 (16b) 

simply 

(L(5) = r,+ (s’$) exp ]-&X5-- GII 

s 

c 
+ exp[-1~~,(5-5’)1Sm(5’)dT’ (15) 

S’=C& 

which is valid for 

<:, < 5 < r:; when k = 1 

t~j<t<tYj+I when k = 2 

wherej=0,1,2 ,... andm= 1,2,3 ,.... 

We now have reduced the problem to finding the 
values l-,+(5$). We thus integrate equation (lOa) 
from 5 = [E-E to 5 = tg+e and take the limit as 
E -+ 0. After carefully observing the discontinuous 
nature of 8,,,(& the delta function contribution of the 
A,(t) functions, and the continuous behavior of the 
necessary integrating factor, we may express the 

(16a) 

wk:) r+(tg = r:m Ll (16~) 
2rxk:)-wk f ad-,- (<:I p=l 

(164 

The solution for a stepwise periodic Biot number is 
now complete since equation (15) gives expressions 
for the transforms with the rm+(&!J values obtained 
from the solution of matrix equation (16a), truncated 
at a finite number of terms. Since the solution in any 
given region depends on the previous region, com- 
putations proceed from the duct entrance and con- 
tinue downstream, with the r,‘(<$) values required 
for each region. Numerical results using this solution 
will now be used to demonstrate the technique and 
the heat transfer characteristics of flow subjected to a 
variable boundary condition coefficient. 

RESULTS AND DISCUSSIONS 

Heat transfer results for the stepwise periodic Biot 
number depicted in Fig. 2 are now presented. Viscous 
energy dissipation and internal heat sources are 
neglected by setting S(q, 5) = 0 in energy equation 
(la). Most of the results are presented for fully 
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FIG. 2. Stepwise periodic Biot number. 

developed laminar flow in a tube (i = 1, u(r) = 
2241 -(r/r,)*]) since this case has the greatest prac- 
tical interest and since the accuracy of the analy- 
tical technique can be compared directly with the 
finite-difference results of ref. [3]. Other possible cases 
include slug flow in parallel plates or circular tubes 
and fully developed laminar flow in parallel plates. 
The only difference among all these cases is the specific 
functions generated from eigenvalue problem (5), 
where slug flow in parallel plates gives trigonometric 
functions, slug flow in circular tubes gives Bessel func- 
tions, and fully developed laminar flow in parallel 
plates and tubes necessitates the use of Graetz func- 
tions [6]. Although the numerical results would differ 
somewhat, the essential features and heat transfer 
characteristics for all these cases are similar. 

Graphical results are presented for the total heat 
transfer, which in the absence of energy sources and 
viscous dissipation is given by the quantity 

Q(C) = l-&(0 

The bulk temperature is defined as 

(17) 

Using inversion formula (7b) and eigenvalue problem 
(S), equation (18) can be evaluated as 

The dimensionless quantity Q(c) given by equation 
(17) represents the total energy transferred from the 
fluid up to some axial location 5, divided by the total 
energy transferred as a condition of thermal satu- 
ration is reached at sufficiently large 5. Regardless of 
the axial variation or magnitude of the Biot number, 
H(c), a state of thermal saturation will eventually be 
reached where the fluid temperature approaches the 
external environment temperature. The only excep- 
tion is the uninteresting case of H(r) = 0, for which 
the fluid remains at the inlet temperature. Since the 
periodic stepwise Biot number serves as a model for 
a duct fitted with an array of external fins, the quantity 

Q(t) is a meaningful way to display the advantages 
of heat transfer enhancement due to finning. 

The transforms, g,,,(c), required in equation (19) are 
available for the stepwise periodic case from equation 
(15) with L?,(t) = 0. The values I,+ (<$) are obtained 
from matrix equation (16a). The number of terms 
required for convergence in series solution (19) 
depends mainly on 5 - &$, which is the axial distance 
from the previous point where the Biot number 
changed. For a typical value of 5 - r$ = 0.001, 
approximately 10 terms are required for convergence 
to three significant figures. In order to obtain com- 
parable accuracy for the I,‘($) values, matrix equa- 
tion (16a) was solved for 100 elements. As a check on 
the accuracy of the present method, numerical results 
were obtained for several cases with constant Biot 
number (H, = HZ) and these results were found to be 
indistinguishable from other exact methods [2]. For 
the much more demanding case of H, # H,, the only 
available comparison is with the finite-difference sol- 
ution of Sparrow and Charmchi [3]. Here again the 
results using the present analytical solution were indis- 
tinguishable from the numerical solutions presented 
in ref. [3]. 

Turning our attention to Fig. 3, we see the total 
heat transfer, Q(t), plotted as a function of axial 
distance 5. For a finned duct, the length 5, represents 
the interfin spacing while l2 represents the fin thick- 
ness. The low Biot number represents the external 
heat transfer coefficient for unfinned areas while H2 

represents the effective Biot number in finned areas. 
Figure 3 displays results for a constant Biot number 

along with the effect of heat transfer enhancement due 
to larger values of H2. The results are identical for all 
cases until the first Biot number jump is encountered 
at 5 = 0.003. At this point the effect of the enhanced 
heat exchange causes the total heat transfer to rise 
sharply, with a larger H2 giving a steeper rise. The 
enhancement is most significant in the entrance 
region, with the effects diminishing downstream as all 
curves approach thermal saturation. 

The discontinuous variation of the external heat 
transfer coefficient causes the step-like nature shown 
in Fig. 3. For convenience, the details of these steps 
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FIG. 3. Effect of H2 on total heat transfer. 

have been plotted in only the first few regions. The 
total heat transfer rises at a high rate in regions of 
large Biot number and rises at a smaller rate in regions 
of diminished Biot number. This step-like behavior 
makes purely numerical schemes quite demanding [3] 
and is the reason that standard analytical techniques 
fail when applied to present problems. 

We put these results in perspective with the help of 
Fig. 4. Here we display the same results as in Fig. 3 
except that all values of the Biot number have been 
divided by a factor of 2. Although the results of Figs. 
3 and 4 are qualitatively similar, we see that the effect 
of enhanced heat transfer is more pronounced when 
the overall level of the Biot number is decreased, par- 
ticularly in the thermal entry region. To investigate 
this further, we present Fig. 5 where the Biot number 
ratio is fixed at Hz/H1 = 20 while the overall level 
changes. At the relatively low level with H, = 1, 
enhancement has a significant effect as the slope of the 

total heat transfer curve takes sharp turns whenever a 
region of different His encountered. This is in contrast 
to the results for H, = 20, where the overall level is 
already so high that enhancing the heat transfer has 
a much smaller effect. This is because the internal 
resistance to heat flow is the controlling factor once 
the external resistance becomes quite low. 

We now examine the effect of interfin spacing in 
Fig. 6. Here we show results for 5, = 0.001,0.005 and 
co, while holding t2, H, and Hz constant. The case 
where 5, --f co is equivalent to the constant Biot 
number case of H = HI = 1. Figure 6 shows that the 
smaller values of l, give the greatest enhancement 
since the proportion of duct without fins is reduced. 
Again the effects are most pronounced in the duct 
entrance with all curves approaching thermal satu- 
ration further downstream. 

Additional insight into geometric effects is gained 
from Fig. 7. Here the ratio <,/tz remains fixed at 3 

0.001 0.01 0.1 I 

I 
FIG. 4. Effect of Hz on total heat transfer. 
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FIG. 6. Effect of <, (interfin spacing) on total heat transfer. 

I 

go.1 
0 

n,= 50 

0.01 
0.001 0.01 0.1 I 

c 

FIG. 7. Effect of cycle frequency on total heat transfer. 
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while the frequency of low and high Biot number 
cycles is changed. The case where 5, = 0.003 rep- 
resents a relatively large spacing or low frequency. 
The curves for 5, = 0.001 and 0.0003 show very little 
increase in heat transfer once the first region of high 
Biot number or first fin is encountered. This means 
that we can increase the frequency of fins by 3 or even 
10 times and gain a relatively small increase in total 

heat transfer, as long as the ratio 5,/t* remains 
constant. The more effective means to increase heat 
transfer is to make the ratio t,/t2 smaller, as seen in 
Fig. 6. 

The influence of the assumed velocity profile is 
examined in Fig. 8, where the effect of heat transfer 
enhancement resulting from the parameter H2 is pre- 
sented for both laminar and slug flow. Note that the 
step-like nature displayed in previous graphs has been 
smoothed by passing a curve through the midpoint of 
each region. This process is illustrated in the laminar 
flow curve for Hz = 20, where a portion of the step- 
like behavior is also displayed. As seen in Fig. 8, the 
total heat transfer is greater at any given axial location 
for slug flow than for laminar flow. This is due to the 
greater velocity in the wall region for slug flow which 
effectively lowers the internal thermal resistance. With 
a lower internal resistance, greater heat transfer can 
be achieved for any given level of the external resist- 
ance. The slug flow results are expected to be charac- 
teristic of turbulent flow results, since turbulence 
enhances both the momentum and energy trans- 
port processes and thus lowers the internal thermal 
resistance. 

CONCLUSIONS 

The present investigation concerns forced con- 
vection in laminar duct flow subject to an axial vari- 
ation of the external heat transfer coefficient or Biot 
number. Although the governing equations are rela- 

tively easy to describe and seem quite harmless, they 
are surprisingly difficult to solve. Since the variable 
heat transfer coefficient makes the problem non- 
separable, all standard analytical procedures fail and 
a variable eigenvalue approach is developed which 
is capable of handling variable boundary condition 
parameters. Methodology is developed to handle a 
stepwise periodic Biot number since this case serves 
as a model for a duct fitted with an array of regularly 
spaced fins and also represents the most com- 
putationally demanding test for the general analysis. 

A parameter study is presented which displays the 
effects of heat transfer enhancement due to finning for 
laminar flow in a tube. It is demonstrated that the 
total heat transfer can be increased significantly by 
enhancing the effective heat transfer coefficient using 
fins. Augmentation is the most beneficial when the 
overall level of the external Biot number is low, since 
the external thermal resistance is high. Heat transfer 
is also sensitive to the proportion of duct with fins, 
while the frequency of the fins has relatively little 
influence. The effect of velocity profile is also 
examined. Due to a higher velocity and a lower inter- 

nal resistance near the wall, the slug flow gives greater 
heat transfer than the laminar flow. 

Although numerical results are provided for a step- 
wise periodic Biot number and are related to the appli- 
cation of a finned tube, the general analysis can be 
applied to any variation of the external Biot number 
which can be used to model a variety of situations. 
For instance, the effects of axial conduction in the 
tube wall could be included by specifying a harmonic 
or smoothed out variation of the Biot number. Also, 
a variety of other applications can be readily modeled 
including periodically contacting surfaces, thermal 
quenching, transient heat conduction with time vary- 
ing heat transfer coefficient and phase change prob- 
lems. The methodology presented should lend insight 
into the solution for this general class of problems 
involving variable boundary condition parameters. 

- LAMINAR FLOW 

- -- SLUG FLOW 

H,= 1 

t, =0.0003 

& = 0.0001 

O.OlCf ’ I III I I III I I II 

0.001 0.01 0.1 I 

1 
FIG. 8. Effect of velocity profile on total heat transfer. 



Laminar flow with an axially varying heat transfer coefficient 1889 

Acknowledgement-This work was supported by the 
National Science Foundation through Grant No. MEA- 
8403964. 4. 

REFERENCES 5. 

1. L. Graetz, Uber die Wlrmeleitungsfahigheit von Fliis- 
sigkeiten, Ann/n Phys. Chem. 25, 337-357 (1885). 6. 

2. R. K. Shah and A. L. London, Laminar Flow Forced 
Convection in Ducts. Academic Press, New York (1978). 

3. E. M. Sparrow and M. Charmchi, Laminar heat transfer 

in an externally finned circular tube, J. Heat Transfer 102, 
605411 (1980). 
V. Javeri, Heat transfer in laminar entrance region of a 
flat channel for the temperature boundary condition of 
the third kind, Warme- u. Stojjiibertr. 10, 137-144 (1977). 
M. N. &sik and R. L. Murray, On the solution of linear 
diffusion problems with variable boundary condition par- 
ameters, J. Heat Transfer 96,48-51 (1974). 
J. R. Sellars, M. Tribus and J. S. Klein, Heat transfer to 
laminar flow in a round tube or flat conduit-the Graetz 
problem extended, Trans. Am. Sot. mech. Engrs 78,44- 
447 (1956). 

ECOULEMENT LAMINAIRE AVEC UN COEFFICIENT DE 
THERMIQUE VARIABLE SUIVANT L’AXE 

CONVECTION 

R&nn&On presente une etude theorique de convection therrnique pour un ecoulement laminaire dans 
un tube soumis a une variation axiale du coefficient de transfert thermique. Puisque les techniques 
analytiques standard ne sont pas applicables, on dkveloppe une approche par valeurs propres qui est 
capable de traiter des parametres de condition limite variable. La methodologie est present&e dans le cas 
d’une variation periodique en creneaux du coefficient de transfert thermique qui modelise un canal equipe 
d’ailettes externes. Une etude paramttrique sur les effets dun coefficient de transfert periodique en creneaux 

permet de comprendre l’accroissement du transfert thermique dti aux ailettes. 

LAMINARE STR~MUNG MIT EINEM AXIAL SIGH ANDERNDEN 
W;iRMEUBERGANGSKOEFFIZIENTEN 

Zusammenfassung-Es wird eine theoretische Studie des konvektiven Wlrmeiibergangskoethzienten in 
einer laminaren Kanalstrijmung abhlngig von einem in axialer Richtung sich andernden LuBeren Wlrme- 
ilbergangskoeffizienten gezeigt. Da die allgemein iiblichen analytischen Methoden hier nicht anwendbar 
sind, wurde eine variable Eigenwertmethode entwickelt, welche die Anwendung von variablen Rand- 
bedingungen ermoglicht. Das Verfahren wird fur das Beispiel eines sich schrittweise periodisch lndernden 
Warmetibergangskoeffizienten gezeigt, welches als Model1 fur einen aul3en berippten Kanal dient. Eine 
Parameterstudie zeigt den EinfluD eines schrittweise periodischen Warmetibergangskoeffizienten und gibt 

einen Einblick in die Erhohung des Wirmeiibertragungsvermogens durch eine Berippung. 

JIAMMHAPHOE TE’IEHWE C HEPEMEHHbIM BAOJIb OCH K03@0WHWEHTOM 
TEI-IJIOIIEPE~AYH 

kIIIoTsuHn-TeopeTwiecKH ki3yqaeTcn KoHaeKTmHbtfi TennonepeHoc npu naMuHapHoM TeSeum a 
KaHane C tlpO!Z!OnbHO H3MeHabXtWiMCR K03I$$JtiuWeHTOM Teu,IOueJ_W,aW. I-IOCKOnbKy A3BeCTHbIe MeTOnb, 
K AaHHoMy cnygato He npuMeHaMbt, pasaw nonxon nepeMeHHbtx co6cTseHHbtx 3Haqetiuil Ann nepehlee- 
Hbtx rpaHsrHbtx ycnoauti. PaccMorpeti cnyqafi crynensaroro nepaonmiecxoro n3Meuemia ~03+$w 
wieuTa Tennonepenawf, Koropaa RBnaeTCa MOLIenbIo &as KaHana c BHetuHm ope6peHueM. 
lIpencTaeneH napab4eTpmecKuI aHam annxmia crynemtaroro nepuonevecxoro n3Menemia KO~@A- 

weHTa Tennoo6MeHa, KoTopbtii 06baCHaeT yceneme TennonepeHoca 38 weT ope6peeaa. 


